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Running head: Exclusion reasoning in parrots 

Abstract: 

 Inference by exclusion is the ability to select a given option by excluding the others. When 

designed appropriately, tests of this ability can reveal choices that cannot be explained by 

associative processes. Over the past decade, exclusion reasoning has been explored in several 

non-human taxonomic groups including birds, mainly in Corvids and Parrots. To increase our 

understanding of the taxonomic distribution of exclusion reasoning and therefore its evolution, 

we investigated exclusion performances in Red-tailed Black cockatoos (Calyptorhynchus 

banksii), an Australian relative of the Goffin cockatoo (Cacatua goffinia), using a food-finding 

task. Cockatoos were required to find a food item hidden in one of the two experimenter's hands. 

Following training sessions in which they reliably selected the closed baited hand they had just 

been shown open, each individual was tested on four different conditions. Critical to 

demonstrating exclusion reasoning was the condition in which they were shown the empty hand 

and then offered a choice of both closed hands. The performance of all birds was above chance 

on all experimental conditions but not on an olfactory and/or cuing control condition. The results 

suggest that the birds might be able to infer by exclusion, although an explanation based on rule 

learning cannot be excluded. This first experiment in Red-tailed Black cockatoo highlights this 

species’ potential as a model to study avian cognition and paves the pathway for future 

investigations.  

 

Keywords: Cognition, Comparative cognition, Inferential reasoning, Parrot cognition, 

Psittaciforms 
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INTRODUCTION 

 

Whether the differences between human and non-human minds are one of degree or one of kind 

continues to be the subject of a lively debate (Cobley 2016; Shettleworth 2012; Penn et al. 2008). 

Over the decades, stimulated by these conversations, many different facets of human and non-

human cognition have been explored. Although the debate is far from settled, this large body of 

empirical research has accumulated evidence for a broad diversity of cognitive abilities in non-

humans that were originally thought to be uniquely human. 

 

Mapping the taxonomic distribution of distinct cognitive abilities provides the only means by 

which the ecological factors that favour their evolution can be identified (Brown & Magat 2011). 

This approach is particularly suited to tests that are well defined from both a conceptual and a 

procedural point of view (e.g. Dean et al. 2007; Johnson & Deaner 2002; Shultz & Dunbar 

2010). Unfortunately, for many decades, driven heavily by the motivation to study species 

whose brains appeared to be architecturally most similar to those of humans and a strong focus 

on dissecting mechanisms in a small number of model systems, comparative cognition was 

focused very heavily on primates (Permack & Permack 1983; Boesch & Boesch 1990; Povinelli 

et al. 1990; Tomasello & Call 1997; Call 2001; Hare et al. 2001). Now, however, the field 

encompasses a much welcomed broader taxonomic scope (Jaakkola et al. 2005; Carazo et al. 

2009; Menzel & Fischer 2010; Fiset & Plourde 2012; Krueger et al. 2013). Birds have enjoyed 

particular interest because of the growing awareness that, despite its architectural dissimilarities, 

the avian brain is functionally much more akin to the mammalian brain than had been previously 

thought (Jarvis et al. 2005; Reiner et al. 2004; ten Cate & Healy 2017). 
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Inferential reasoning, whose investigation in non-human primates began in the 1970s 

(McGonigle & Chalmers 1977), is a rare example of a cognitive capacity that has been studied 

from both a proximate and ultimate perspective. The common thread of all inferential reasoning 

tests is that they require the subject to apply a logical rule to solve a novel problem (Burt 1911). 

One widely used inferential reasoning test is that of transitive inference (TI), in which 

individuals are required to infer an ordered relationship between items, which have not been 

previously compared, based on prior experience of the position of these items in other ordered 

relationships (McGonigle & Chalmers 1977; Gillan 1981; von Fersen et al. 1991; Benard & 

Giurfa 2004; Paz-y Mino et al. 2004; Grosenick et al. 2007). For example, if individual A is 

known to be dominant over individual B and individual B is known to be dominant over 

individual C, then an individual capable of TI will infer that individual A is dominant of C. For a 

long time, this form of deductive reasoning was upheld as the hallmark of logical-relational 

reasoning and lead to an intense effort to document this ability in a wide range of species. As a 

result, TI is one of best studied capacities from a taxonomical perspective, with studies in 

primates, birds, fish and even insects (Grosenick et al. 2007; Lazareva et al. 2004; Paz-Y-Miño 

et al. 2004). Like many abilities, however, once behavioral responses consistent with the 

capacity for transitive inference began accumulating in a taxonomically diverse range of species, 

alternative explanations based on differential reinforcement, rather than the existence of an 

integrated representation of ordered sequences, began to emerge, laying the foundations for 

more stringent tests (Allen 2006; Vasconcelos 2008; Guez & Stevenson 2011;  Guez & Audley 

2013). 

 

An alternative inferential reasoning capacity that has received far less attention than TI, 

particularly from the point of view of its taxonomic distribution, is the ability to reason by 

exclusion. Reasoning by exclusion involves the ability to select the correct alternative by 
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logically excluding other potential choices (Call 2006). By doing so, it allows the solving of a 

problem based on incomplete information. 

 

In order to explore exclusion skills, several methods have been employed. The oldest ones are 

those using matching-to-sample paradigms in which subjects are presented with a set of 

familiar items with which they learn to associate labels (visual or auditory, such as words, 

symbols or voices). To test for reasoning by exclusion, they are then presented with an 

unknown label and a choice between a familiar or a novel item. Chimpanzees (Pan 

troglodytes) and sea lions (Zalophus californianus) select the novel item when presented with 

an unknown label, suggesting they make the inference that the novel label refers to the novel 

unfamiliar item (Schusterman et al. 1993; Tomonaga 1993; Hashiya and Kojima 2001). More 

recent methodologies have involved developing computer-based tasks in which familiar 

stimuli are associated with a positive or negative value before being presented against an 

unknown stimulus. Domestic dogs (Canis lupus familiaris) spontaneously chose the novel 

over the negative stimulus, suggesting that they infer the novel stimulus was positive (Aust et 

al. 2008). 

 

Because these procedures using computer-tasks or language-trained animals are often 

criticised for their artificiality (Boesch 2008), there has been a focus on developing more 

natural protocols, most often food-finding tasks. The most typical experimental design 

involves presenting individuals with several containers, under one of which, unbeknownst to the 

test subject, a desirable food item is placed. In a variety of conditions, the experimenter briefly 

lifts either the container that does, or the container that does not, contain the food item before 

covering the food once again, at which point the subject is asked to make a choice. The critical 
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test is whether the animal is able to choose the alternative cup when the cup without food has 

been revealed. Great Apes (Call 2006) pass this kind of test, as do domestic dogs (Canis 

familiaris) under some conditions (Erdőhegyi et al. 2007). In birds, evidence is patchy. Pigeons 

(Collumbiforms) fail tests of reasoning by exclusion (Aust et al. 2008). Some songbirds 

(Passeriform order, e.g. ravens (Corvus corvax), Schloegl et al. 2009; Clark’s nutcrackers 

(Nucifraga Columbiana), Tornick & Gibson 2013) show reasoning by exclusion, but others do 

not (i.e. jackdaws (Corvus monedula) Schloegl 2011). 

 

It has been suggested that the cups task as presented above is not enough on its own to prove 

that subjects exclude by inferring the correct location rather than by avoiding the incorrect 

option (Penn & Povinelli 2007; Schloegl et al. 2009). Despite its limitations, the task has the 

advantage that it taps a more relevant ecological context than other designs and is logistically 

much more simple to train than computer-based approaches. It is therefore likely to be more 

applicable to studying larger, more diverse collections of species.  

 

In the parrots, exclusion reasoning has been found in the Cacatuinae subfamily (Goffin 

Cockatoo (Cacatua goffinia), O’Hara et al. 2015), the Psittacinea subfamily (Grey parrots 

(Psittacus erithacus), Mikolasch et al. 2011) and the Nestoridae family (New Zeland Kea 

(Nestor notabilis), O’Hara et al. 2016). When tested on a food-finding task requiring the birds 

to search for food in two tubes of different shape (one straight, one bent), keas, unlike ravens, 

failed to show any exclusion abilities and appeared to spend more time exploring the tubes (e.g. 

looking into both tubes through both ends even when it was not necessary) (Scloegl et al. 

2009). Several explanations for the kea’s unexpected performance have been put forward, 

including discussions of differing levels of intelligence and adaptive specialization 

hypotheses, which link the evolution of reasoning by exclusion to the evolution of food 
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caching in corvids (Scloelg et al. 2009; Schoegl 2011; Mikolasch et al. 2012). However, 

recent studies in parrots strongly suggest that the differences observed between corvids and 

parrots may be due to the application of methodologies ill-suited to testing neophilic parrots. 

O’Hara et al. (2015) have pointed out that the keas’ excessive exploratory behaviours in the 

Schoegl et al. (2009) experiment might be the result of their neophilic tendencies. O’Hara et al. 

subsequently investigated exclusion reasoning using a modified procedure, first in Goffin 

cockatoos (O’Hara et al. 2015) and, more recently, in keas (O’Hara et al. 2016). Using a 

computer screen, these authors presented the birds with a large amount of novel, unrewarded 

stimuli in order to discourage their explorative behaviour, and under these conditions both 

Goffins and keas exhibited the ability to choose by exclusion. 

 

 These patterns of taxonomic distribution suggest that reasoning by exclusion might be a 

common trait to all Psittaciforms. Further investigation of the taxonomic distribution of this 

ability will contribute to developing large comparative data sets of cognitive performance which 

can be used to identify the ecological predictors of particular cognitive abilities and understand 

the evolution of cognition.  

 

Within this context, Australian Red-tailed Black cockatoos (Calyptorhynchus banksii) make for 

a useful taxonomic comparison. Indeed, the taxonomy of parrots (Psittaciform order) was 

recently revised (Joseph et al. 2012) with Strigopoidea (Nestoridae, keas) splitting from the 

lineage leading to the Psittacoidea (containing Grey parrots) and the Cacatuoidea (containing 

Goffins cockatoos). Within the Cacatuoidea, the Calyptorhynchus genus containing the Red-

tailed Black cockatoo split from the Cacatua genus containing Goffin cockatoos 21.6 million 

years ago (White et al. 2011) (Fig. 1). Given that reasoning by exclusion is present in Grey 

parrots (Psittacoidea), Goffin cockatoos (Cacatuoidea) and keas (Nestoridae), determining 
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whether this ability is present in a member of another genus within the Cacatuoidea (i.e. Red-

tailed Black cockatoos) provides insight into whether the capacity has evolved due to the 

particular ecological conditions experienced by Goffin cockatoos, Grey parrots and keas or 

whether it is likely to be the result of shared ancestry of the Strigopoidea and the Cacatuoidea 

and common to all members of this taxonomic lineage. Hence, in this study, we undertook to test 

whether Red-tailed Black cockatoos show evidence of reasoning by exclusion. 

 

The Red-tailed Black cockatoo is a Psittaciforme native of Australia, commonly seen in large 

flocks though it also occurs in pairs and trios. They mainly eat seeds but also fruits, berries, 

nectar, flowers and sometimes insects and larvae. They nest in tree cavity, generally 

Eucalyptus, where the female lays usually one egg at a time while the male feeds her. Their 

life span is around 20 years in the wild and can reach 50 years in captivity (Forshaw & 

Cooper 2002). We are aware of no previous studies regarding the cognitive abilities of this 

species. Thus, we chose to test them for the very first time on a food-finding task in order to 

quantify their ability to reason by exclusion. 

 

MATERIALS AND METHODS 

 

Subjects 

 

The experiment was conducted at the Daintree Wild Zoo, Queensland Australia. We tested 

three adult Red-tailed Black cockatoos born in captivity: two males ―Harley‖ and ―Mephisto‖, 

twenty and ten years old respectively and a five-year-old female ―Root‖. Although other birds 

were available to test, these birds were the only ones that were sufficiently food-driven and 

bold to interact closely with a human experimenter. The birds were housed in outside aviaries 
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(8 m length x 1.5 m width x 2.5 m height), containing perches and logs. Birds lived in social 

groups from two to five individuals, food and water were provided ad libitum. Birds were 

tested in their aviaries once a day between 2 pm and 5 pm and were free not to participate in 

the experiment. The zoo was not busy at the time of year when the study was undertaken, but 

in the rare instances when disturbance by visitors occurred, the experimenter interrupted the 

experiments. All subjects were completely naïve to cognitive testing when we began working 

with them a few month earlier and had no experience of the experimental procedure at the 

start of the study. The individuals we tested were not part of the same social group. Aviaries 

were half covered so that the tests took place out of sight of the other subjects, excluding any 

possibility for social learning. Because these birds can be neophobic, playful and destructive, 

the traditional use of cups to hide the reward when testing inference by exclusion had to be 

modified. We elected to hide the reward in the experimenter's hands, an approach with which 

the cockatoos quickly and willingly engaged. A fourth bird was trained to participate in the 

task (see below), but because he did not reach the training criterion of facing the human 

experimenter, he was excluded from the study. 

 

General procedure 

 

Training 

 

All training and testing was conducted by the first author (L.S.). To train the birds to 

participate in the task, a rock was placed on a tray attached to the aviary’s door in a position 

where the birds were routinely fed. The tray was located 114 cm above the ground and the 

rock was placed at the tray’s edge, 48 cm from the aviary door. A small rectangular trapdoor 

in the aviary’s door allowed the experimenter to move her hands into the aviary and present 
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them to the bird. Each bird was first trained to climb on the rock and face the experimenter by 

attracting and rewarding them with a half almond. Once they had learned to climb on the rock 

and to wait there facing the experimenter in expectation of a reward, the choice procedure 

began. 

 

To initiate a trial, the subject had to be standing on the rock and facing the experimenter who 

was standing on the other side of the aviary door. The bird could see the experimenter 

through the aviary door but the experimenter prepared her hands (i.e placed the reward in one 

of them) outside the focal subject’s line of sight. Each trial was then composed of a 

presentation phase followed by a choice phase. When the subject was ready (i.e on the rock, 

facing the experimenter), the experimenter opened the trapdoor and presented her two closed 

hands to the bird for 2 s at approximately 20 cm from the bird and a gap of 26 cm between 

the hands. The experimenter then opened both hands palms turned upwards. One of the hands 

was randomly baited, with the restriction that the reward was not on the same side 

consecutively more than twice (Fig. 2A). Once the experimenter made sure the subject had 

looked at the content of her hands (i.e. the birds rotated their head to inspect the content of 

the hands closely and then maintained their beak pointed towards the baited hand), hands 

were closed and placed at the two corners of the tray, fists down. In this position, the hands 

were approximately 48 cm apart and located 48 cm from the bird. The subject was then 

allowed to make a choice by leaving the rock and touching one of the experimenter’s hands 

(Fig. 2B). If the bird selected the correct, baited hand, then the experimenter opened the 

selected, baited hand and proceeded to giving the reward (half almond) to the subject. If the 

subject selected the wrong, non-baited hand, the experimenter opened the selected, non-

baited hand, but the subject received no reward. Importantly, the experimenter never showed 

the content of the non-selected hand after the bird had made its choice. In this way, the bird 
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never saw that the food was in the hand it had not chosen. A new trial was initiated as soon as 

the subject had finished eating the reward (if it had received one) and had returned to the rock. 

 

Subjects were trained until they performed significantly above chance level on two 

consecutive sessions, where a session consisted of all the trials completed by a subject on a 

given training day. Given that this number fluctuated across days as a function of the bird’s 

willingness to participate, this number varied from one session to another. Hence, we did not 

consider training days of fewer than 10 trials to assess whether or not subject had reached 

criterion. Although this differs from other more standardized procedures in which 

performance is calculated every set number of trials, we felt this approach better accounted 

for the fact that the bird’s performance could very quite substantially from one day to another 

just due to their motivation to participate. The approach therefore returned a more reliable 

training performance threshold where we could be quite certain the birds had learnt the task. 

 

Testing 

 

Following the same procedure as for training, we tested the birds on four conditions. In all 

conditions, one hand was baited and one was not, but the conditions varied in how hands 

were presented during the presentation phase. 

 

Birds received 12 inter-spaced trials of each condition. For each subject, condition order was 

randomized with the restriction that any one condition was not tested more than twice in a 

row. For each bird, the reward was presented an equal number of times in the left and the 

right hand for all trial types. 
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As during training, the experimenter opened only the selected hand, such that the bird 

received a reward only if it had selected the correct, baited hand. If it had not, the subject 

received no reward. Importantly, the bird never saw that the food was in the hand it had not 

chosen.  

 

Both hands open (Fig. 2C). This procedure was identical to that used during the training 

procedure described above. We retained this condition during training to determine whether 

training performance dropped as a consequence of transfer testing, as well as to make sure the 

birds did not loose interest in participating. The experimenter opened both hands at the same 

time and presented their content to the subject. The experimenter then closed her hands and 

placed them onto the tray for the choice phase. This condition allowed us to maintain birds’ 

motivation and check if the test conditions affected a subject’s performances in this basic 

condition. 

 

No hands open (Fig. 2D). The experimenter presented her two hands to the subject, but both 

were closed. The experimenter then placed her hands onto the tray ready for the focal bird to 

make its choice. This condition constituted an olfactory and cuing control. 

 

Baited hand open (Fig. 2E). The experimenter presented her two hands to the subject but only 

the baited hand was open. The experimenter then closed her open baited hand and placed 

both her hands on the tray for the choice phase.  

 

Empty hand open (Fig. 2F). The experimenter presented her two hands to the subject with 

only the empty one open. The experimenter then closed her open empty hand and moved both 

her hands onto the tray for the choice phase. 
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The last two conditions both involved presenting the bird for the first time with one closed 

fist during the presentation phase, a stimulus they had not experienced during the presentation 

phase of any previous training trial. The two conditions differed, however, in so far that in the 

baited hand open condition, the open hand was the one that contained food, as had been the 

case during training. In contrast, in the empty hand open condition, to succeed in finding the 

food, they needed to select for the very first time the hand that they had seen closed during 

presentation. These details are relavant to the discussion of the role of associative learning in 

solving the task. 

 

 

 Statistical Analysis 

 

We modeled the birds’ performance using a Generalised Linear model with a binomial error 

and a probit link. The model included choice accuracy (correct/incorrect) as a binary outcome 

variable and condition, reinforced hand and individual as categorical predictor variables. The 

probit regression was performed using Wizard 1.8.27. 

 

RESULTS 

 

It took on average 171 trials (+/- 53 trials) for the three birds to reach a criterion of 

performing significantly above chance for two consecutive sessions during the training phase. 

Performance across the first 30 trials is depicted in Figure S1. 

 



 

14 

 

Performances during the training phase are depicted in Figure 3. The probit regression model 

provided a good fit with an area under the ROC curve of 0.89 (Fig. 3A). Using the training 

condition as the reference (i.e. Both hands open), condition was found to be highly a 

significant predictor of the birds’ performance accuracy (p<0.001; Fig. 3B). We found no 

evidence that performance differed across the conditions Both hands open, Baited hand only 

(=0.768, 95% CI [-1.75, 3.286]) and Empty hand only (=-5.58e-16, 95% CI [-2.105, 2.105]) 

which were all above chance levels (Fig. 3B). Sequential correct choices were apparent from 

the very first test trials onwards (Fig. 4A, 4B, 4C). However, performance on the No hand 

open condition (=-4.325, 95% CI [-6.462, -2.188]) was significantly lower than performance 

in all other conditions (p<0.001). 

 

DISCUSSION 

 

Using a food-finding experimental design, we investigated whether Red-tailed Black 

cockatoos were capable of inference by exclusion. Patterns of choice accuracy were 

consistent with ability to infer the location of a bait based on partial information. 

 

Our results show that birds performed at chance levels in the No hand open condition. 

Random performance demonstrates that accurate choice of the baited hand in the other 

conditions was not attributable to the use of olfactory cues. Nevertheless, we acknowledge 

that this control condition does not rule out completely the possibility that the experimenter 

inadvertently cued the birds to fail in the No hand open condition and succeed in the others 

conditions. As Grey parrots do not use human cues in choice experiments unless the cues are 

deliberate and obvious (Pepperberg 1990, 1999; Pepperberg et al. 2013), we can reasonably 
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infer that it may be the same in Red-tailed Black cockatoos. Nevertheless, future work should 

incorporate even more stringent cuing controls. 

 

The ability of the cockatoos to chose correctly the baited hand on the very first test trial when 

only the empty hand had been presented is consistent with the capacity of these birds to reason 

by exclusion. It is also important to consider alternative explanations based upon differential 

reinforcement, however. In the present context, the essence of an associative account of 

performance would be that the birds learnt to respond to arbitrary cues (CS+) that reliably 

predicted a reward (US+). The vast majority of associative theories assume that these cues 

acquire associative strength as a consequence of reward expectations being violated, as occurs 

when a reward is received when it was not been expected, for example (Rescorla & Wagner 

1972). An important part of putting forward associatve explanations is identifying what these 

cues might be, and what part(s) of the experimental procedure, if any, allow them to be learnt. 

 

During training, the birds were presented with a choice involving an open baited hand versus an 

open empty hand. Associative accounts indicate that with repetition birds could have learnt that 

the sight of the food (conditioned stimulus, CS+) predicted the food reward (unconditioned 

stimulus, US) and that the empty hand predicted no food reward (CS-). Hence, according to 

associative theory, the open hand would have acquired positive associative strength, while the 

open empty hand acquired either no or negative associative strength depending on initial 

expectations of food within the task, the details of which we leave aside here. Based upon 

such learning, the birds could have made a correct choice in Baited hand open condition as it 

involved presenting the CS+.  
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Drawing further upon this associative account, the birds encountered the CS- (empty hand 

open) during the Empty hand open condition. For the first time, however, the alternative hand 

was a closed fist. If the birds had learnt an association between the CS- and not receiving 

food, one must explain in associative terms why they correctly chose the closed fist the very 

first time they encountered this combination of cues. One possible associative explanation is 

that the closed fist had acquired a small amount of associative strength during the latter parts 

of training when the CS+ (open hand) was then closed and made available for choice. In the 

latter parts of training, this choice tended to be the correct one, turning the fist into a reliable 

predictor of reward. 

 

This account requires some latent learning of a secondary cue that follows immediately a 

primary cue even though the secondary cue provides no additional predictive information. 

Although this is possible, we think the reliably high performance of the birds on the Empty 

hand open condition makes it unlikely. Indeed, during the olfactory control, the birds 

experienced two closed fists yet this cue was not reliably reinforced because the birds chose 

randomly. This experience should have reduced the associative strength of the closed fists, 

with for consequence that performance on the Empty hand open condition should have 

gradually declined. Although one bird’s performance (Root) fluctuated slightly, that of two 

birds remained consistely highly accurate across all 12 trials in the critical Empty hand open 

condition. It is also essential to note that the assertion that birds solved the Empty hand open 

condition by applying a learnt ―rule‖ to choose the other hand in response to the CS- (an 

empty hand) inherently relies upon the birds having learnt that food was always available in 

one of the two hands, even though they had never been shown the food in the non selected 

hand (see methods). Learning the rule that ―if the food is not here, then it must be there‖ is 

reasoning by exclusion. Finally, it might be argued that birds learnt the CS+ or a CS- during 
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each presentation phase of each trial. This explanation would call upon an associative 

learning mechanism without the need for exclusion reasoning. Were this to have been the 

case, however, then the birds should have shown similar rapid accurate performance during 

the training phase of the study. Yet, it can be seen from Figure S1 that this was clearly not the 

case; it took Harley 179 trials to reach criterion (performing above chance on two consecutive 

sessions), 120 for Mephisto and 118 for Root. In sum, we conclude that when considering the 

overall performance of the birds, reasoning by exclusion is a more likely explanation than is 

an associative account. 

 

In comparison with other studies, the number of  training trials to reach criterion in the 

present study is unusually high. Previous studies involving keas (Schlogl et al. 2009) and 

Grey parrots (Mikolasch et al. 2011) reported 20 to 30 trials for the birds to reach the training 

criterion. Although slower acquisition might reflect differences in learning abilities between 

Red-tailed Black cockatoos on the one hand, and Grey parrots and keas on the other, it is 

important to bear in mind that the birds used here were naïve to any kind of cognitive testing 

when we begain working with them some months prior to the present study. This is atypical 

of most avian cognitive research, which is generally conducted using long-standing captive 

colonies of highly tested individuals. Lack of traning might have impaired the ability or the 

motivation of our birds to stay on task. 

 

It is also important to bear in mind that direct comparisons of acquisition speed might be made diffi-

cult due to differences in how criterion performance is evaluated. Some researchers calculate per-

formance across discrete blocks of set numbers of trials while we chose to measure performance 

using daily performance. For example, had our birds been considered to have reached criterion 

based on a minimum of 80% success across two consecutive blocks of 10 trials, the cockatoos would 
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have reached criterion in 180 trials, 120 trials, and 80 trials, respectively. Yet, despite being success-

ful on two consecutive blocks of 10 trials, the cockatoos would not have performed at criterion lev-

els the very next day. Defining what level of training guarantees equivalent levels of knowledge will 

be a challenge for future comparative research despite its attractiveness (Thornton & Lukas 2012). 

 

In conclusion, both the Red-tailed Black cockatoo and the Goffins cockatoo belong to the 

Cacatuoidea but each one belongs to a different genus. Grey parrots belong to the 

Psittacoidea whereas New Zeland keas belong to the Strigopoidea which split from the 

lineage leading to the Psittacoidea and the Cacatuoidea. The finding that Red-tailed Black 

cockatoos appear to show reasoning by exclusion, as do Goffin cockatoos, Grey parrots and 

New Zealand keas suggests that this ability evolved prior the split of the Strigopoidea. The 

present study illustrates the potential for future cognitive work in this species and for the 

Psittaciforms to constitute a taxonomic group in which the faculty to infer by exclusion could 

be sampled more broadly to examine the environmental and social factors associated with 

this ability. 
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Figure S1 Responses during the training phase for each individual during the first 30 trials. 1 

denotes success, 0 failure. 
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SUPPLEMENTARY MATERIALS 

Figure legends: 

 

 

Figure 1: Tree diagram of the taxonomic distribution of Psittaciforms. 
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Figure 2: Training and testing conditions. A- Training condition: baited hand is randomly 

chosen and both hands are presented open for observation. B- Retrieval phase (for both 

training and test phases). C- Both hands open condition; D- No hands open condition; E- 

Baited hand open condition; F- Empty hand open condition. 
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Figure 3: Test results. A- top: comparison of the  coefficient for each conditions and 

confidence interval; 0 indicates the reference condition (both hands open); no hands open 

(pink); empty hand open (green); baited hand open (purple). A- bottom: ROC curve showing 

the quality of the probit model used. B- Individual performance for each condition. 
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Figure 4: Test result in order of presentation for each test condition. A- ―Both hands open‖ 

(or reference condition). B- ―Baited hand open‖. C- ―Empty hand open‖ D- ―No hands open‖ 

condition. 1 denote success 0 failure. 

 


